
Copyright © 2019 Rigetti Computing

SBCL for Quantum
Computing at Rigetti

Robert Smith
SBCL 20th Anniversary

10 December 2019

Copyright © 2019 Rigetti Computing

Me
● SBCL user since approx 2010, relative newbie
● Made one patch for ISQRT (which had bugs)
● stylewarning on IRC
● Sometimes noisy and annoying in #sbcl

○ I try to provide feedback, usage experience, perceived bugs, etc
○ Big supporter of porting SBCL to other platforms, but often my only contribution is HW

● Aspire to one day be in the big leagues of nikodemus, dougk, stassats,
pkhuong, Xof, Alastair, etc.

● Manage the group at Rigetti responsible for quantum programming tools

Copyright © 2019 Rigetti Computing

Previous discussions
● “Lisp at the Frontier of Computation”, Bay Area Lisp Meetup (on YouTube)
● “Forest: An Open Source Quantum Software Development Kit”, FOSDEM 19

(on Youtube)
● “A Quantum Interpreter in 175 Lines of Lisp”, ELS 2018 in Marbella, Spain
● “An Optimizing Compiler for Near-Term Quantum Computers”, ELS 2020

○ ??? TBD TBD TBD

I’ll try to talk about stuff I wouldn’t ordinarily talk about in those venues.

Copyright © 2019 Rigetti Computing

Rigetti Computing
● >100 employees across the world
● Build and deploy Real™ quantum computers
● HQ & Quantum Data Center is in Berkeley, CA
● Full-service quantum integrated circuit fab in Fremont, CA
● Main product: Quantum Cloud Services (QCS)

○ Highest performing quantum computing service

● Recently announced: Integration into AWS with Amazon Braket

Copyright © 2019 Rigetti Computing

Copyright © 2019 Rigetti Computing

Copyright © 2019 Rigetti Computing
Quantum processors, powered in part by Lisp.

Copyright © 2019 Rigetti Computing

What you need to know about quantum
computers

Copyright © 2019 Rigetti Computing

Quantum computers are just computers
● They are real
● They can be programmed
● They have a running “state”
● They run by processing instructions which affect that state

Only twist: What is the state? It’s not bits in RAM or processor registers.

It’s a quantum state. And unfortunately it’s non-trivial to describe.

But it’s still a state that is manipulated by instructions.

Copyright © 2019 Rigetti Computing

What is the tensor product?

A tensor product is one way to combine vector spaces.

Copyright © 2019 Rigetti Computing

What is the tensor product?

“V tensor W”

Copyright © 2019 Rigetti Computing

Modeling a single qubit
A qubit can be in a zero-state, or one-state, or some kind of superposition.

But the probability of being in either has to be 1.

The values α and β are called probability amplitudes. They’re complex numbers!

“The zero-state” “The one-state”

Copyright © 2019 Rigetti Computing

Modeling two qubits
A pair of qubits can interact.

The state of 2 qubits is a vector of 4 complex numbers.

We simply label each of the possible basis states by a bitstring.

State-space of qubit a.

State-space of qubit b.

Their combined state-space is a tensor product.

Copyright © 2019 Rigetti Computing

A general quantum state
We can add more qubits by adjoining more to the tensor product.

The state of 3 qubits would need 8 components.
The state of 4 qubits would need 16 components, and so on...

The state ψ is sometimes called a wavefunction.

Each component indirectly represents a probability of observing that state.

Copyright © 2019 Rigetti Computing

26 qubits → laptop

36 qubits → expensive server

46 qubits → supercomputer

260 qubits → universe-sized computer

Scaling of a simulation...

Copyright © 2019 Rigetti Computing

Computing a GHZ state on 4 qubits
$ echo 'H 0; CNOT 0 1; CNOT 1 2; CNOT 2 3' | ./qvm
[... snip …]
Amplitudes:

|0000>: 0.7071067811865475, P= 50.0%
|0001>: 0.0, P= 0.0%
|0010>: 0.0, P= 0.0%
|0011>: 0.0, P= 0.0%
|0100>: 0.0, P= 0.0%
|0101>: 0.0, P= 0.0%
|0110>: 0.0, P= 0.0%
|0111>: 0.0, P= 0.0%
|1000>: 0.0, P= 0.0%
|1001>: 0.0, P= 0.0%
|1010>: 0.0, P= 0.0%
|1011>: 0.0, P= 0.0%
|1100>: 0.0, P= 0.0%
|1101>: 0.0, P= 0.0%
|1110>: 0.0, P= 0.0%
|1111>: 0.7071067811865475, P= 50.0%

Instructions cannot frob amplitudes directly! They can only address qubits!

Program:
 H 0
 CNOT 0 1
 CNOT 1 2
 CNOT 2 3

Copyright © 2019 Rigetti Computing

Back to Lisp

Copyright © 2019 Rigetti Computing

Common Lisp @ Rigetti github.com/rigetti

● Lisp since 2016
○ Only one Lisp project was rewritten, and it turned out to be too slow after rewriting

● Majority of SW engineers
○ For most of them, Rigetti is their first true exposure to Lisp

● About 50k lines of open source, mission-critical code
○ qvm: a quantum computer simulator
○ quilc: an optimizing compiler for quantum computers
○ Grab bag of other things: matrix algebra, lexer generators, RPC framework, etc

● Around 10 full-time Lisp programmers
○ Administered lots of project-based contracts; had about 10 Lisp-writing interns over the years

● Pretty exclusively SBCL, but we have dabbled with CCL, ECL, ACL, LW
● Mostly try to write ANSI conforming code

Copyright © 2019 Rigetti Computing

Simulator (qvm) Compiler (quilc)
● One of the fastest simulators in the world
● Certainly the most flexible

○ Supports many kinds of simulation
○ Supports simulating noise

● Has a poor-man’s quantum-to-asm JIT
○ Outperforms other simulators by >10%

● Runs on two flavors of computer
architecture

○ Single address space, scales to as much
RAM as you have

○ Distributed with Marco’s CL-MPI, can scale
as much as you want

● World’s only quantum compiler that’s:
○ Optimizing
○ Automatic
○ Completely open source

● Compiler has parametric backends
○ Crude comparison: Imagine being able to

specify at runtime the no. registers, the
available arithmetic instructions, memory
layout, etc.

● Compiles “high-level” code called Quil into
native quantum computer instructions

Copyright © 2019 Rigetti Computing

Lots of different kinds of issues, from...

Copyright © 2019 Rigetti Computing

...to...

Copyright © 2019 Rigetti Computing

Lisp’s influence on Quil

Quil was originally an S-expression-based language.

Then the parens were stripped out.

But vestiges of Lispiness still exist:

● DEFGATE: define a new quantum operator
● DEFCIRCUIT: define a shorthand for a sequence of instructions
● Kebab-case variable names

○ Much to the chagrin of people wanting to write x-y for subtraction.

Copyright © 2019 Rigetti Computing

Lisp’s influence: DEFINE-COMPILER

What to translate

What instructions to expand to.

Copyright © 2019 Rigetti Computing

Lisp’s influence: more DEFINE-COMPILER

Translation to math speak:

If INSTR is an instruction acting on the qubits
QUBIT-INDICES of quantum state PSI, and if PSI is
an eigenvector of INSTR, then eliminate it.

Copyright © 2019 Rigetti Computing

SBCL @ Rigetti
● Relatively serious users of SBCL
● Heaps sometimes measured in terabytes
● Custom SIMD VOPs
● Lots of performance hacking
● Have deployed Lisp to:

○ Raspberry pi’s
○ Regular old laptops
○ Beefy servers (2+ TB RAM)
○ Networked clusters
○ TBD: Supercomputers?

● At a point where we can probably justify
hiring a full-time SBCL hacker.

Copyright © 2019 Rigetti Computing

Google recently announced Quantum Supremacy
● A quantum computer solved an artificial, contrived, classically difficult

mathematical problem on the order of minutes.
○ The best supercomputer would take centuries

● It still doesn’t prove quantum computers will be useful, but it’s a good first
step.

● In this regime, how do we verify that the quantum computer did something
correctly?

Copyright © 2019 Rigetti Computing

How? We use supercomputers.
● First, we choose slightly smaller problems that won’t take millenia to solve
● The only supercomputer able to check Google’s boldest claim is Summit
● Over 9,000 22-core POWER9 (ppc64el) chips
● Rigetti has been developing supercomputer simulators for almost 2 years
● Originally, we were going to use ECL…
● …or ask a commercial CL vendor to port(since it’s practically impossible to pay SBCL devs)…
● …until a bunch of SBCL dev magic happened in the past 6 months

○ (Shoutout to dougk & karlosz for finishing up the ppc64el job!)

● Still haven’t run on Summit, but now it’s on the table.

Copyright © 2019 Rigetti Computing

I also like ppc64el because I have two
POWER8 servers racked up in my spare

bedroom.

Copyright © 2019 Rigetti Computing

Getting SBCL to play nice(r) with
customers

(work by Juan Bello-Rivas, Mark Skilbeck)

Copyright © 2019 Rigetti Computing

Customers want shared libraries
● Funny “servers”, RPC mechanisms, etc. were turn-offs to many of our most

prodigious customers and users
● They want to use Python, C++, Julia, etc.
● They also sometimes want extreme customization, shared memory, and other

stuff that doesn’t fit the RPC model.
● Shared libraries with C headers are one solution
● ECL, ACL, and LW support shared libraries

Copyright © 2019 Rigetti Computing

“So just use ECL, that’s what it’s for!”
● ECL is too slow, hard to optimize, conses a lot
● We found it difficult to integrate with; “documentation” was ecl.h
● Seems great if you want to do what it says on the box: “embed a Common

Lisp”
○ Seems less great for delivering large applications that mostly look like C

● Biggest hang-up: Doesn’t have SLAD!
○ Loading our simulator takes >2 minutes (!!) on a modern MacBook Pro

● Not “production ready” for our app….
● … but Daniel K does an excellent job responding to requests, improving, etc.
● So how do we integrate with C code?

Copyright © 2019 Rigetti Computing

Hack libsbcl.so.

Copyright © 2019 Rigetti Computing

Interface between C and SBCL
A simple idea:

● Repurpose alien callbacks.
● Put libsbcl.so to work.

To simplify further, we take threading out of the picture.

Copyright © 2019 Rigetti Computing

What’s needed: don’t exit
● An interface to src/runtime/runtime.c that returns from Lisp (as

opposed to exiting to the OS directly).

This requires modifying save-lisp-and-die in Lisp and letting sbcl_main in C return to its
caller.

Copyright © 2019 Rigetti Computing

What’s needed: setup signal handlers
● While switching back and forth between C and Lisp, we save and restore

signal handlers.

The SBCL runtime handles signals occurring during Lisp code while the C side handles signals in C
code (i.e., at the moment it is not possible to set up a signal handler in Lisp to catch a signal emitted
in C).

Copyright © 2019 Rigetti Computing

What’s needed: get stack in order
● Additionally, we hijack funcall_alien_callback in

src/runtime/x86-64-assem.S to set up the stack so that C can call into
Lisp.

Copyright © 2019 Rigetti Computing

Embedding the core
To provide a more self-contained solution, we embed the SBCL core into:

● Linux shared objects: we create a new ELF section where we store the core.

We extract the core into a temporary file right before invoking sbcl_main at runtime.

● macOS dynamic libraries: we append the core at the end of the file and use
the Mach-O file format to figure out the offset where it is located when
needed.

● We could have modified sbcl_main to read the core directly from the
libraries instead of extracting it but so far we've been conservative in how
many changes to SBCL we make.

○ SBCL developers are grumpy about wacky changes :)

Copyright © 2019 Rigetti Computing

Data structure access
We store key objects in immobile space to get persistent memory addresses as
well as garbage collection.

This enables the possibility of creating direct C interfaces to Lisp data structures
akin to the way the SBCL runtime accesses primitive objects stored in the static
memory space.

Lisp heap Foreign memory
(Stuff from/in C)

Dynamic space
(“Real” Lisp objs)

Immobile space
(Objs/obj brokers)

Copyright © 2019 Rigetti Computing

“CSBCL” is still a work-in-progress
● Single-threaded
● Still lots of boilerplate
● Using callback-heaven to generate alien callbacks and manage patching

in those function pointers somewhere C accessible
○ https://github.com/stylewarning/callback-heaven

● Hoping to get some of the good ideas into SBCL proper!
○ Would love first-class support for shared libraries

Copyright © 2019 Rigetti Computing

Closing comments on the value of
Common Lisp for quantum computing.

(From the presentation) Common Lisp, the language, is a major boon to productivity, and we all know it. We rave about the greatness of macros, conditions,
CLOS, etc., all of the things that make Common Lisp what it is. Though enormously valuable, it’s not the power of the language that makes it especially suited
for quantum computing, it’s that implementations like SBCL—and certainly Common Lisp itself—provide truly first-class support for rapid development and
idea-trying. Rapid development, in the way I’m describing it, is not the same as “rapid prototyping”; Common Lisp and SBCL have proven themselves time
after time in building production-grade software. The innovative tools we’ve built at Rigetti could not have been possible without SBCL, and SBCL’s stability
has been a foundation for our software. Nobody yet knows how quantum computing will work 10 or 20 or 30 years from now, and innovation will depend on
folks—like those at Rigetti—to be able to move fast with their ideas. In my opinion, Common Lisp environments are the only that truly permit that.

Copyright © 2019 Rigetti Computing

thanks; fin

