
Cargo-culting an SBCL backend

Charles Zhang

December 20, 2019

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 1 / 19

Outline

1 Introduction

2 Writing a new backend

3 Current status

4 Future backend work

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 2 / 19

Who am I?

Third year undergraduate student
Linguistics & Math
Research interest: Historical Linguistics

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 3 / 19

Who am I?

Third year undergraduate student

Linguistics & Math
Research interest: Historical Linguistics

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 3 / 19

Who am I?

Third year undergraduate student
Linguistics & Math

Research interest: Historical Linguistics

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 3 / 19

Who am I?

Third year undergraduate student
Linguistics & Math
Research interest: Historical Linguistics

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 3 / 19

Lisp/compiler stuff

CLISP GSoC project (2018)
Wrote an SSA-based optimizing compiler targeting the CLISP VM

DCE, Loop invariant hoisting, SCC propagation, inlining etc.

SBCL
Brought up RISC-V backend (Spring 2019)
Entered the tail-end of PPC64 porting work by adding native threads
(once Robert Smith kindly offered access to his PowerPC)

Clasp (Spring 2019)

LLVM (Summer 2019)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 4 / 19

Lisp/compiler stuff

CLISP GSoC project (2018)
Wrote an SSA-based optimizing compiler targeting the CLISP VM

DCE, Loop invariant hoisting, SCC propagation, inlining etc.

SBCL
Brought up RISC-V backend (Spring 2019)
Entered the tail-end of PPC64 porting work by adding native threads
(once Robert Smith kindly offered access to his PowerPC)

Clasp (Spring 2019)

LLVM (Summer 2019)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 4 / 19

Lisp/compiler stuff

CLISP GSoC project (2018)
Wrote an SSA-based optimizing compiler targeting the CLISP VM

DCE, Loop invariant hoisting, SCC propagation, inlining etc.

SBCL
Brought up RISC-V backend (Spring 2019)
Entered the tail-end of PPC64 porting work by adding native threads
(once Robert Smith kindly offered access to his PowerPC)

Clasp (Spring 2019)

LLVM (Summer 2019)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 4 / 19

Lisp/compiler stuff

CLISP GSoC project (2018)
Wrote an SSA-based optimizing compiler targeting the CLISP VM

DCE, Loop invariant hoisting, SCC propagation, inlining etc.

SBCL
Brought up RISC-V backend (Spring 2019)
Entered the tail-end of PPC64 porting work by adding native threads
(once Robert Smith kindly offered access to his PowerPC)

Clasp (Spring 2019)

LLVM (Summer 2019)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 4 / 19

What is RISC-V?

New CPU architecture spawned by UC Berkeley
Original purpose was as a teaching language

A descendant of the original RISC architectures
Whence came MIPS as well, the previous teaching language

Fixed some antiquated design decisions
No branch delay slots

Explicitly open-source, libre, patent-free ISA.
Extensible

Specifications for various ISA extensions modular, base ISA is tiny
(only need ~35 instructions to compile C)

A lot of hype and gaining corporate support
Potential uses range from embedded to general purpose (one can
hope!)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 5 / 19

What is RISC-V?

New CPU architecture spawned by UC Berkeley
Original purpose was as a teaching language

A descendant of the original RISC architectures
Whence came MIPS as well, the previous teaching language

Fixed some antiquated design decisions
No branch delay slots

Explicitly open-source, libre, patent-free ISA.
Extensible

Specifications for various ISA extensions modular, base ISA is tiny
(only need ~35 instructions to compile C)

A lot of hype and gaining corporate support
Potential uses range from embedded to general purpose (one can
hope!)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 5 / 19

What is RISC-V?

New CPU architecture spawned by UC Berkeley
Original purpose was as a teaching language

A descendant of the original RISC architectures
Whence came MIPS as well, the previous teaching language

Fixed some antiquated design decisions
No branch delay slots

Explicitly open-source, libre, patent-free ISA.
Extensible

Specifications for various ISA extensions modular, base ISA is tiny
(only need ~35 instructions to compile C)

A lot of hype and gaining corporate support
Potential uses range from embedded to general purpose (one can
hope!)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 5 / 19

What is RISC-V?

New CPU architecture spawned by UC Berkeley
Original purpose was as a teaching language

A descendant of the original RISC architectures
Whence came MIPS as well, the previous teaching language

Fixed some antiquated design decisions
No branch delay slots

Explicitly open-source, libre, patent-free ISA.
Extensible

Specifications for various ISA extensions modular, base ISA is tiny
(only need ~35 instructions to compile C)

A lot of hype and gaining corporate support
Potential uses range from embedded to general purpose (one can
hope!)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 5 / 19

What is RISC-V?

New CPU architecture spawned by UC Berkeley
Original purpose was as a teaching language

A descendant of the original RISC architectures
Whence came MIPS as well, the previous teaching language

Fixed some antiquated design decisions
No branch delay slots

Explicitly open-source, libre, patent-free ISA.

Extensible
Specifications for various ISA extensions modular, base ISA is tiny
(only need ~35 instructions to compile C)

A lot of hype and gaining corporate support
Potential uses range from embedded to general purpose (one can
hope!)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 5 / 19

What is RISC-V?

New CPU architecture spawned by UC Berkeley
Original purpose was as a teaching language

A descendant of the original RISC architectures
Whence came MIPS as well, the previous teaching language

Fixed some antiquated design decisions
No branch delay slots

Explicitly open-source, libre, patent-free ISA.
Extensible

Specifications for various ISA extensions modular, base ISA is tiny
(only need ~35 instructions to compile C)

A lot of hype and gaining corporate support
Potential uses range from embedded to general purpose (one can
hope!)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 5 / 19

What is RISC-V?

New CPU architecture spawned by UC Berkeley
Original purpose was as a teaching language

A descendant of the original RISC architectures
Whence came MIPS as well, the previous teaching language

Fixed some antiquated design decisions
No branch delay slots

Explicitly open-source, libre, patent-free ISA.
Extensible

Specifications for various ISA extensions modular, base ISA is tiny
(only need ~35 instructions to compile C)

A lot of hype and gaining corporate support
Potential uses range from embedded to general purpose (one can
hope!)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 5 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester

C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)
Final project was implementing a RISC-V CPU in a visual HDL.
Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.
I like SBCL.
The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester

C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)
Final project was implementing a RISC-V CPU in a visual HDL.
Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.
I like SBCL.
The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester
C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)

Final project was implementing a RISC-V CPU in a visual HDL.
Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.
I like SBCL.
The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester
C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)
Final project was implementing a RISC-V CPU in a visual HDL.

Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.
I like SBCL.
The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester
C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)
Final project was implementing a RISC-V CPU in a visual HDL.
Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.
I like SBCL.
The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester
C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)
Final project was implementing a RISC-V CPU in a visual HDL.
Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.

I like SBCL.
The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester
C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)
Final project was implementing a RISC-V CPU in a visual HDL.
Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.
I like SBCL.

The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester
C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)
Final project was implementing a RISC-V CPU in a visual HDL.
Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.
I like SBCL.
The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Why SBCL + RISC-V?

Intro machine structures course last fall semester
C, RISC-V assembly, CPU architecture (cache, virtual memory etc.)
Final project was implementing a RISC-V CPU in a visual HDL.
Upshot: Had to learn every base ISA instruction, its encoding, and how
to implement it in hardware

Christophe Rhodes’s blog post about SBCL + RISC-V on trains.
I like SBCL.
The time was ripe.

Or was it?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 6 / 19

Get hardware

Really important
I had no hardware, only a (broken) slow Fedora qemu VM.

cold init initially took about 30 minutes.
warm load added another half hour.
don’t get me started on the test suite.

Turns out this porting effort was very premature.

no GDB :(
broken kernel :(
Real Linux-capable SiFive board: $1000+ :((

If I were in the EECS department, maybe more luck.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 7 / 19

Get hardware

Really important

I had no hardware, only a (broken) slow Fedora qemu VM.
cold init initially took about 30 minutes.
warm load added another half hour.
don’t get me started on the test suite.

Turns out this porting effort was very premature.

no GDB :(
broken kernel :(
Real Linux-capable SiFive board: $1000+ :((

If I were in the EECS department, maybe more luck.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 7 / 19

Get hardware

Really important
I had no hardware, only a (broken) slow Fedora qemu VM.

cold init initially took about 30 minutes.
warm load added another half hour.
don’t get me started on the test suite.

Turns out this porting effort was very premature.

no GDB :(
broken kernel :(
Real Linux-capable SiFive board: $1000+ :((

If I were in the EECS department, maybe more luck.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 7 / 19

Get hardware

Really important
I had no hardware, only a (broken) slow Fedora qemu VM.

cold init initially took about 30 minutes.
warm load added another half hour.
don’t get me started on the test suite.

Turns out this porting effort was very premature.

no GDB :(
broken kernel :(
Real Linux-capable SiFive board: $1000+ :((

If I were in the EECS department, maybe more luck.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 7 / 19

Get hardware

Really important
I had no hardware, only a (broken) slow Fedora qemu VM.

cold init initially took about 30 minutes.
warm load added another half hour.
don’t get me started on the test suite.

Turns out this porting effort was very premature.
no GDB :(

broken kernel :(
Real Linux-capable SiFive board: $1000+ :((

If I were in the EECS department, maybe more luck.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 7 / 19

Get hardware

Really important
I had no hardware, only a (broken) slow Fedora qemu VM.

cold init initially took about 30 minutes.
warm load added another half hour.
don’t get me started on the test suite.

Turns out this porting effort was very premature.
no GDB :(
broken kernel :(

Real Linux-capable SiFive board: $1000+ :((

If I were in the EECS department, maybe more luck.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 7 / 19

Get hardware

Really important
I had no hardware, only a (broken) slow Fedora qemu VM.

cold init initially took about 30 minutes.
warm load added another half hour.
don’t get me started on the test suite.

Turns out this porting effort was very premature.
no GDB :(
broken kernel :(
Real Linux-capable SiFive board: $1000+ :((

If I were in the EECS department, maybe more luck.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 7 / 19

Get hardware

Really important
I had no hardware, only a (broken) slow Fedora qemu VM.

cold init initially took about 30 minutes.
warm load added another half hour.
don’t get me started on the test suite.

Turns out this porting effort was very premature.
no GDB :(
broken kernel :(
Real Linux-capable SiFive board: $1000+ :((

If I were in the EECS department, maybe more luck.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 7 / 19

32-bit vs 64-bit

RV32 and RV64 not binary compatible.
Christophe started the port as a 32-bit port.
So I continued developing it as a 32-bit port.
Later, found out only RV64 is Linux-capable at the moment.
Oops.
Upshot: Now the only shared {32/64}-bit backend in SBCL.

It helps that RV32 and RV64 were designed at the same time.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 8 / 19

32-bit vs 64-bit

RV32 and RV64 not binary compatible.

Christophe started the port as a 32-bit port.
So I continued developing it as a 32-bit port.
Later, found out only RV64 is Linux-capable at the moment.
Oops.
Upshot: Now the only shared {32/64}-bit backend in SBCL.

It helps that RV32 and RV64 were designed at the same time.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 8 / 19

32-bit vs 64-bit

RV32 and RV64 not binary compatible.
Christophe started the port as a 32-bit port.

So I continued developing it as a 32-bit port.
Later, found out only RV64 is Linux-capable at the moment.
Oops.
Upshot: Now the only shared {32/64}-bit backend in SBCL.

It helps that RV32 and RV64 were designed at the same time.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 8 / 19

32-bit vs 64-bit

RV32 and RV64 not binary compatible.
Christophe started the port as a 32-bit port.
So I continued developing it as a 32-bit port.

Later, found out only RV64 is Linux-capable at the moment.
Oops.
Upshot: Now the only shared {32/64}-bit backend in SBCL.

It helps that RV32 and RV64 were designed at the same time.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 8 / 19

32-bit vs 64-bit

RV32 and RV64 not binary compatible.
Christophe started the port as a 32-bit port.
So I continued developing it as a 32-bit port.
Later, found out only RV64 is Linux-capable at the moment.

Oops.
Upshot: Now the only shared {32/64}-bit backend in SBCL.

It helps that RV32 and RV64 were designed at the same time.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 8 / 19

32-bit vs 64-bit

RV32 and RV64 not binary compatible.
Christophe started the port as a 32-bit port.
So I continued developing it as a 32-bit port.
Later, found out only RV64 is Linux-capable at the moment.
Oops.

Upshot: Now the only shared {32/64}-bit backend in SBCL.
It helps that RV32 and RV64 were designed at the same time.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 8 / 19

32-bit vs 64-bit

RV32 and RV64 not binary compatible.
Christophe started the port as a 32-bit port.
So I continued developing it as a 32-bit port.
Later, found out only RV64 is Linux-capable at the moment.
Oops.
Upshot: Now the only shared {32/64}-bit backend in SBCL.

It helps that RV32 and RV64 were designed at the same time.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 8 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .

Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .

Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .

Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .

Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .
Labels and addressing modes

Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .
Labels and addressing modes
Relocations

Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .
Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)

CSR frobbers
Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .
Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .
Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions

define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .
Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions
define-instruction-macro

Load 64-bit Immediate on RV64 - what a doozy!
Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Write the instruction definitions

Christophe defined a good deal of the base ISA instructions.
Good macros help!

The regularity of the instruction set is a boon.
Adding RV64 support later was easy

Needed to implement. . .
Labels and addressing modes
Relocations
Floating point instructions (F and D extensions)
CSR frobbers

Pseudoinstructions
define-instruction-macro
Load 64-bit Immediate on RV64 - what a doozy!

Adding special cases reduced core size in half
Even the LLVM backend does a worse job

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 9 / 19

Documentation

Read the CMUCL docs, especially the internals guide by Rob
MacLachlan

Nothing in the SBCL tree comes close.

Read Alastair Bridgewater’s ARM port logs
Read the source judicially.
Get schooled on IRC.

I’m karlosz on freenode.

In the end, none of this really matters that much though.

Just cargo-cult until you understand.

Comment in locall.lisp
;;;; Note: Take a look at the compiler-overview.tex
;;;; section on "Hairy function representation" before
;;;; you seriously mess with this stuff.

;;;; FIXME: where is that file?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 10 / 19

Documentation

Read the CMUCL docs, especially the internals guide by Rob
MacLachlan

Nothing in the SBCL tree comes close.

Read Alastair Bridgewater’s ARM port logs
Read the source judicially.
Get schooled on IRC.

I’m karlosz on freenode.

In the end, none of this really matters that much though.

Just cargo-cult until you understand.

Comment in locall.lisp
;;;; Note: Take a look at the compiler-overview.tex
;;;; section on "Hairy function representation" before
;;;; you seriously mess with this stuff.

;;;; FIXME: where is that file?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 10 / 19

Documentation

Read the CMUCL docs, especially the internals guide by Rob
MacLachlan

Nothing in the SBCL tree comes close.

Read Alastair Bridgewater’s ARM port logs

Read the source judicially.
Get schooled on IRC.

I’m karlosz on freenode.

In the end, none of this really matters that much though.

Just cargo-cult until you understand.

Comment in locall.lisp
;;;; Note: Take a look at the compiler-overview.tex
;;;; section on "Hairy function representation" before
;;;; you seriously mess with this stuff.

;;;; FIXME: where is that file?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 10 / 19

Documentation

Read the CMUCL docs, especially the internals guide by Rob
MacLachlan

Nothing in the SBCL tree comes close.

Read Alastair Bridgewater’s ARM port logs
Read the source judicially.

Get schooled on IRC.

I’m karlosz on freenode.

In the end, none of this really matters that much though.

Just cargo-cult until you understand.

Comment in locall.lisp
;;;; Note: Take a look at the compiler-overview.tex
;;;; section on "Hairy function representation" before
;;;; you seriously mess with this stuff.

;;;; FIXME: where is that file?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 10 / 19

Documentation

Read the CMUCL docs, especially the internals guide by Rob
MacLachlan

Nothing in the SBCL tree comes close.

Read Alastair Bridgewater’s ARM port logs
Read the source judicially.
Get schooled on IRC.

I’m karlosz on freenode.
In the end, none of this really matters that much though.

Just cargo-cult until you understand.

Comment in locall.lisp
;;;; Note: Take a look at the compiler-overview.tex
;;;; section on "Hairy function representation" before
;;;; you seriously mess with this stuff.

;;;; FIXME: where is that file?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 10 / 19

Documentation

Read the CMUCL docs, especially the internals guide by Rob
MacLachlan

Nothing in the SBCL tree comes close.

Read Alastair Bridgewater’s ARM port logs
Read the source judicially.
Get schooled on IRC.

I’m karlosz on freenode.

In the end, none of this really matters that much though.

Just cargo-cult until you understand.

Comment in locall.lisp
;;;; Note: Take a look at the compiler-overview.tex
;;;; section on "Hairy function representation" before
;;;; you seriously mess with this stuff.

;;;; FIXME: where is that file?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 10 / 19

Documentation

Read the CMUCL docs, especially the internals guide by Rob
MacLachlan

Nothing in the SBCL tree comes close.

Read Alastair Bridgewater’s ARM port logs
Read the source judicially.
Get schooled on IRC.

I’m karlosz on freenode.
In the end, none of this really matters that much though.

Just cargo-cult until you understand.

Comment in locall.lisp
;;;; Note: Take a look at the compiler-overview.tex
;;;; section on "Hairy function representation" before
;;;; you seriously mess with this stuff.

;;;; FIXME: where is that file?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 10 / 19

Documentation

Read the CMUCL docs, especially the internals guide by Rob
MacLachlan

Nothing in the SBCL tree comes close.

Read Alastair Bridgewater’s ARM port logs
Read the source judicially.
Get schooled on IRC.

I’m karlosz on freenode.
In the end, none of this really matters that much though.

Just cargo-cult until you understand.

Comment in locall.lisp
;;;; Note: Take a look at the compiler-overview.tex
;;;; section on "Hairy function representation" before
;;;; you seriously mess with this stuff.

;;;; FIXME: where is that file?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 10 / 19

VM def

(defreg zero 0) (defreg lr 1)
(defreg nsp 2) (defreg global 3)
(defreg thread 4) (defreg lra 5) ; alternate link register
(defreg cfp 6) (defreg ocfp 7)
(defreg nfp 8) (defreg csp 9)
(defreg a0 10) (defreg nl0 11)
(defreg a1 12) (defreg nl1 13)
(defreg a2 14) (defreg nl2 15)
...
(defreg cfunc 26) (defreg lexenv 27)
(defreg null 28) (defreg code 29)
(defreg lip 30) (defreg nargs 31)

(defregset descriptor-regs a0 a1 ... l2 l3 ocfp lra lexenv)
(defregset boxed-regs a0 a1 ... l1 l2 l3 ocfp lra lexenv code)
(define-argument-register-set a0 a1 a2 a3)

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 11 / 19

Write VOPs

VOPs are the translators ("templates") that turn backend independent
"virtual machine" instructions into native code.
Read every backend’s version for inspiration on how to do it best. A
good way to understand what the IR2 instructions do in the first
place.

MIPS is architecturally close to RISC-V.
ARM64 and x86-64 have the cool new optimizations.
PPC somewhere between MIPS and ARM.

Mostly blindly copy and hope it works.
The calling convention VOPs are the most design-heavy for a new
CPU and least amenable to cargo culting.

Good opportunity to use the ISA to its fullest extent.
Try and microoptimize every VOP.

It’s quite satisfying to shave off a few bytes here and there.

Dealing with some 64-bit differences in object layout and tagging
extremely annoying

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 12 / 19

Write VOPs

VOPs are the translators ("templates") that turn backend independent
"virtual machine" instructions into native code.

Read every backend’s version for inspiration on how to do it best. A
good way to understand what the IR2 instructions do in the first
place.

MIPS is architecturally close to RISC-V.
ARM64 and x86-64 have the cool new optimizations.
PPC somewhere between MIPS and ARM.

Mostly blindly copy and hope it works.
The calling convention VOPs are the most design-heavy for a new
CPU and least amenable to cargo culting.

Good opportunity to use the ISA to its fullest extent.
Try and microoptimize every VOP.

It’s quite satisfying to shave off a few bytes here and there.

Dealing with some 64-bit differences in object layout and tagging
extremely annoying

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 12 / 19

Write VOPs

VOPs are the translators ("templates") that turn backend independent
"virtual machine" instructions into native code.
Read every backend’s version for inspiration on how to do it best. A
good way to understand what the IR2 instructions do in the first
place.

MIPS is architecturally close to RISC-V.
ARM64 and x86-64 have the cool new optimizations.
PPC somewhere between MIPS and ARM.

Mostly blindly copy and hope it works.
The calling convention VOPs are the most design-heavy for a new
CPU and least amenable to cargo culting.

Good opportunity to use the ISA to its fullest extent.
Try and microoptimize every VOP.

It’s quite satisfying to shave off a few bytes here and there.

Dealing with some 64-bit differences in object layout and tagging
extremely annoying

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 12 / 19

Write VOPs

VOPs are the translators ("templates") that turn backend independent
"virtual machine" instructions into native code.
Read every backend’s version for inspiration on how to do it best. A
good way to understand what the IR2 instructions do in the first
place.

MIPS is architecturally close to RISC-V.
ARM64 and x86-64 have the cool new optimizations.
PPC somewhere between MIPS and ARM.

Mostly blindly copy and hope it works.

The calling convention VOPs are the most design-heavy for a new
CPU and least amenable to cargo culting.

Good opportunity to use the ISA to its fullest extent.
Try and microoptimize every VOP.

It’s quite satisfying to shave off a few bytes here and there.

Dealing with some 64-bit differences in object layout and tagging
extremely annoying

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 12 / 19

Write VOPs

VOPs are the translators ("templates") that turn backend independent
"virtual machine" instructions into native code.
Read every backend’s version for inspiration on how to do it best. A
good way to understand what the IR2 instructions do in the first
place.

MIPS is architecturally close to RISC-V.
ARM64 and x86-64 have the cool new optimizations.
PPC somewhere between MIPS and ARM.

Mostly blindly copy and hope it works.
The calling convention VOPs are the most design-heavy for a new
CPU and least amenable to cargo culting.

Good opportunity to use the ISA to its fullest extent.

Try and microoptimize every VOP.
It’s quite satisfying to shave off a few bytes here and there.

Dealing with some 64-bit differences in object layout and tagging
extremely annoying

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 12 / 19

Write VOPs

VOPs are the translators ("templates") that turn backend independent
"virtual machine" instructions into native code.
Read every backend’s version for inspiration on how to do it best. A
good way to understand what the IR2 instructions do in the first
place.

MIPS is architecturally close to RISC-V.
ARM64 and x86-64 have the cool new optimizations.
PPC somewhere between MIPS and ARM.

Mostly blindly copy and hope it works.
The calling convention VOPs are the most design-heavy for a new
CPU and least amenable to cargo culting.

Good opportunity to use the ISA to its fullest extent.
Try and microoptimize every VOP.

It’s quite satisfying to shave off a few bytes here and there.

Dealing with some 64-bit differences in object layout and tagging
extremely annoying

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 12 / 19

Write VOPs

VOPs are the translators ("templates") that turn backend independent
"virtual machine" instructions into native code.
Read every backend’s version for inspiration on how to do it best. A
good way to understand what the IR2 instructions do in the first
place.

MIPS is architecturally close to RISC-V.
ARM64 and x86-64 have the cool new optimizations.
PPC somewhere between MIPS and ARM.

Mostly blindly copy and hope it works.
The calling convention VOPs are the most design-heavy for a new
CPU and least amenable to cargo culting.

Good opportunity to use the ISA to its fullest extent.
Try and microoptimize every VOP.

It’s quite satisfying to shave off a few bytes here and there.

Dealing with some 64-bit differences in object layout and tagging
extremely annoying

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 12 / 19

Runtime glue

Implement some assembly routines
Write operating system support

Signal handling, FP handling, and the like

GC hookup
call_into_lisp and call_into_c, usually part of a .S file.

Decided to write it in the Lisp assembler rather than the system
assembler, the first backend to do so
Have full power of Lisp to generate assembly.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 13 / 19

Runtime glue

Implement some assembly routines

Write operating system support
Signal handling, FP handling, and the like

GC hookup
call_into_lisp and call_into_c, usually part of a .S file.

Decided to write it in the Lisp assembler rather than the system
assembler, the first backend to do so
Have full power of Lisp to generate assembly.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 13 / 19

Runtime glue

Implement some assembly routines
Write operating system support

Signal handling, FP handling, and the like

GC hookup
call_into_lisp and call_into_c, usually part of a .S file.

Decided to write it in the Lisp assembler rather than the system
assembler, the first backend to do so
Have full power of Lisp to generate assembly.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 13 / 19

Runtime glue

Implement some assembly routines
Write operating system support

Signal handling, FP handling, and the like

GC hookup

call_into_lisp and call_into_c, usually part of a .S file.
Decided to write it in the Lisp assembler rather than the system
assembler, the first backend to do so
Have full power of Lisp to generate assembly.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 13 / 19

Runtime glue

Implement some assembly routines
Write operating system support

Signal handling, FP handling, and the like

GC hookup
call_into_lisp and call_into_c, usually part of a .S file.

Decided to write it in the Lisp assembler rather than the system
assembler, the first backend to do so
Have full power of Lisp to generate assembly.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 13 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.

Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.

Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.

Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .

Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.

I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.

Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

Bootstrap time

OK. Now you’ve cross-compiled a cold core and have a runtime to run
it.
Start it in the VM. Lose instantly.
Debug, fix, repeat.
Anything bad can happen, especially early in cold-init.

Illegal instructions, smashed interrupt stacks, off by one errors, bad
VOPs, bad instruction encoding, bad runtime glue. . .
Good luck finding out why.

GDB will show you the way.
I had no GDB.

Write out trace files and manually disassemble cores, step through the
instructions manually like it’s 1962.
Hope you didn’t smash the stack too hard and corrupt LDB so you can
at least read out the registers at crash time.

It gets better once you get a Lisp debugger.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 14 / 19

The big bad

In late March I hit a bad snag which crippled the porting effort.
A signal routine related to sigmask handling in the runtime would
always fail.
After much chasing, turned out to be a kernel bug.
By then there were new Fedora images, with GDB and a kernel with a
working signal library.
Phillip Matthias Schäfer wanted to try the port and had the same
crashes. Indeed he was using the broken VM image.

Later he ported sb-rotate-byte support to RISC-V.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 15 / 19

The big bad

In late March I hit a bad snag which crippled the porting effort.

A signal routine related to sigmask handling in the runtime would
always fail.
After much chasing, turned out to be a kernel bug.
By then there were new Fedora images, with GDB and a kernel with a
working signal library.
Phillip Matthias Schäfer wanted to try the port and had the same
crashes. Indeed he was using the broken VM image.

Later he ported sb-rotate-byte support to RISC-V.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 15 / 19

The big bad

In late March I hit a bad snag which crippled the porting effort.
A signal routine related to sigmask handling in the runtime would
always fail.

After much chasing, turned out to be a kernel bug.
By then there were new Fedora images, with GDB and a kernel with a
working signal library.
Phillip Matthias Schäfer wanted to try the port and had the same
crashes. Indeed he was using the broken VM image.

Later he ported sb-rotate-byte support to RISC-V.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 15 / 19

The big bad

In late March I hit a bad snag which crippled the porting effort.
A signal routine related to sigmask handling in the runtime would
always fail.
After much chasing, turned out to be a kernel bug.

By then there were new Fedora images, with GDB and a kernel with a
working signal library.
Phillip Matthias Schäfer wanted to try the port and had the same
crashes. Indeed he was using the broken VM image.

Later he ported sb-rotate-byte support to RISC-V.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 15 / 19

The big bad

In late March I hit a bad snag which crippled the porting effort.
A signal routine related to sigmask handling in the runtime would
always fail.
After much chasing, turned out to be a kernel bug.
By then there were new Fedora images, with GDB and a kernel with a
working signal library.

Phillip Matthias Schäfer wanted to try the port and had the same
crashes. Indeed he was using the broken VM image.

Later he ported sb-rotate-byte support to RISC-V.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 15 / 19

The big bad

In late March I hit a bad snag which crippled the porting effort.
A signal routine related to sigmask handling in the runtime would
always fail.
After much chasing, turned out to be a kernel bug.
By then there were new Fedora images, with GDB and a kernel with a
working signal library.
Phillip Matthias Schäfer wanted to try the port and had the same
crashes. Indeed he was using the broken VM image.

Later he ported sb-rotate-byte support to RISC-V.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 15 / 19

GC

Initially started with cheneygc.
Christophe expressed it would probably be easier to start off this way.

Got a real core with cheneygc eventually.
After pestering on IRC I ported to gengc.

Much faster
cheneygc has some issues on 64-bit platforms.

Defaults to gengc now, though technically cheneygc should still work
with no problem.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 16 / 19

GC

Initially started with cheneygc.
Christophe expressed it would probably be easier to start off this way.

Got a real core with cheneygc eventually.
After pestering on IRC I ported to gengc.

Much faster
cheneygc has some issues on 64-bit platforms.

Defaults to gengc now, though technically cheneygc should still work
with no problem.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 16 / 19

GC

Initially started with cheneygc.
Christophe expressed it would probably be easier to start off this way.

Got a real core with cheneygc eventually.

After pestering on IRC I ported to gengc.

Much faster
cheneygc has some issues on 64-bit platforms.

Defaults to gengc now, though technically cheneygc should still work
with no problem.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 16 / 19

GC

Initially started with cheneygc.
Christophe expressed it would probably be easier to start off this way.

Got a real core with cheneygc eventually.
After pestering on IRC I ported to gengc.

Much faster
cheneygc has some issues on 64-bit platforms.

Defaults to gengc now, though technically cheneygc should still work
with no problem.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 16 / 19

GC

Initially started with cheneygc.
Christophe expressed it would probably be easier to start off this way.

Got a real core with cheneygc eventually.
After pestering on IRC I ported to gengc.

Much faster

cheneygc has some issues on 64-bit platforms.

Defaults to gengc now, though technically cheneygc should still work
with no problem.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 16 / 19

GC

Initially started with cheneygc.
Christophe expressed it would probably be easier to start off this way.

Got a real core with cheneygc eventually.
After pestering on IRC I ported to gengc.

Much faster
cheneygc has some issues on 64-bit platforms.

Defaults to gengc now, though technically cheneygc should still work
with no problem.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 16 / 19

GC

Initially started with cheneygc.
Christophe expressed it would probably be easier to start off this way.

Got a real core with cheneygc eventually.
After pestering on IRC I ported to gengc.

Much faster
cheneygc has some issues on 64-bit platforms.

Defaults to gengc now, though technically cheneygc should still work
with no problem.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 16 / 19

Current status

Can run quicklisp.
Supports :sb-linkage-table.
Supports some stack allocation.
Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.
Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

Current status

Can run quicklisp.

Supports :sb-linkage-table.
Supports some stack allocation.
Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.
Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

Current status

Can run quicklisp.
Supports :sb-linkage-table.

Supports some stack allocation.
Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.
Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

Current status

Can run quicklisp.
Supports :sb-linkage-table.
Supports some stack allocation.

Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.
Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

Current status

Can run quicklisp.
Supports :sb-linkage-table.
Supports some stack allocation.
Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.
Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

Current status

Can run quicklisp.
Supports :sb-linkage-table.
Supports some stack allocation.
Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.
Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

Current status

Can run quicklisp.
Supports :sb-linkage-table.
Supports some stack allocation.
Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.

Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

Current status

Can run quicklisp.
Supports :sb-linkage-table.
Supports some stack allocation.
Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.
Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

Current status

Can run quicklisp.
Supports :sb-linkage-table.
Supports some stack allocation.
Only a few test suite failures remaining

Mostly to do with floating point issues.
RISC-V doesn’t have hardware floating point traps.

Much work has been done on optimizing the VOPs and finding a good
calling convention.
Works for at least one other person on a good qemu image.

Anyone want to test on real hardware?

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 17 / 19

What’s left for RISC-V?

C extension

Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension

Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.

Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .

Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks

Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling

Debugger stuffs
Single stepping

Native threading
Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping

Native threading
Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!

Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!
Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!
Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.

Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

What’s left for RISC-V?

C extension
Potential for big space savings.
Unclear what the right way to codegen this is.

Have instruction emitters choose C-insts AND/OR. . .
Write versions of VOPs using C-insts.

Alien callbacks
Better DX handling
Debugger stuffs

Single stepping
Native threading

Need to understand the RISC-V concurrency model.
Need to settle on a synchronization method.
AFAICT these specs are still in flux anyway.

Jump tables!
Leverage Douglas Katzman and Stas Boukarev’s efforts on some new
IR2 machinery in the backend.

Includes peephole optimizations and case dispatch => jump table work.
Currently mainly exploited on x86oids and a bit on PPC

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 18 / 19

Backends for everyone

Make backend porting easier.

Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability

Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.

Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability

Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.

Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability

Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.

Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability

Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.

Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability
Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.

Looking at you, PPC and PPC64.
Adding C runtime support could be easier.

Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability
Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.

Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability
Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.

Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability
Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.
Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability
Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.
Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.

gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability
Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.
Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

Backends for everyone

Make backend porting easier.
Better abstractions

Make some helpful macros backend-independent.
array getter/setter and floating point VOPs especially.

More code sharing, maintainability
Don’t want to have to make two sets of identical changes to the 32-bit
ports and 64-bit ports living in different directories.
Looking at you, PPC and PPC64.

Adding C runtime support could be easier.
Our hookup of GC into backend codegen and runtime is too
complicated.

We support two GCs, but in an ad-hoc manner.
gengc on older backends seems doable.

Make threads, alien callbacks, gengc etc. less tedious to implement.

Charles Zhang Cargo-culting an SBCL backend December 20, 2019 19 / 19

	Introduction
	Writing a new backend
	Current status
	Future backend work

