
Dynamic space relocation

David Lichteblau

December 15, 2009

SBCL memory layout

+------------------------------------+
| | read-only | static | dynamic | sbcl.core
+------------------------------------+ (not to scale...)

mmap each of them at startup to (Linux/x86):

I A few bytes of read-only space at #x01000000

I A few bytes of static space at #x01100000

I 512 MB of dynamic space #x09000000 to #x29000000

Issues # 1

I Why maintain this table manually in the first place?

Issues # 2

I What if Linux/nonmainstreamhardware now has the stack at
#x10000000?

I Would like sbcl.so, runnable in an existing process. What if
the host process has something mmap()ed at #x25000000?

I Microsoft Windows

Solution

Relocate spaces at startup to a suitable locations
(Dynamic space only at this point.)

The relocation patch in a nutshell

os_vm_address_t

-os_validate(os_vm_address_t addr, os_vm_size_t len)

+os_validate(os_vm_address_t addr, os_vm_size_t len, int fixedp)

{

int flags = MAP_PRIVATE | MAP_ANON;

- if (addr)

+ if (addr && fixedp)

flags |= MAP_FIXED;

addr = mmap(addr, len, OS_VM_PROT_ALL, flags, -1, 0);

if (addr == MAP_FAILED) {

perror("mmap");

return NULL;

}

return addr;

}

(*BSD version)

API

Describe which part of memory moves where (can relocate multiple
such segments simultaneously).

struct relocation_segment {
long *old_start;
long *old_end;
long displacement;

};

fixme: currently assumes sizeof(long)=sizeof(void*), will break on 64bit Windows

Random API functions

Dynamic space relocation: Segment at ptr , relocate from old
position old start to new position old start + displacement:

void relocate_single(

long *ptr, long nwords, long *old_start, long displacement);

Static space fixup: Segment unchanged, put points to something that
has moved:

void

relocation_fixup(long *fixup_ptr,

long n_fixup_words,

int nsegments,

struct relocation_segment *segments);

See other talk for use case: Segments still at old position, each
relocated in place for a future position:

void relocate_all(int nsegments, struct relocation_segment *segments);

looks mostly just like scav * or ptrans *

static void

sub_relocate(long *ptr, long nwords, struct relocator *ctx)

{

int nsegments = ctx->nsegments;

struct relocation_segment *segments = ctx->segments;

long *p;

long *q = ptr + nwords;

long nrelocated;

int i;

for (p = ptr; p < q; p += nrelocated) {

long word = *p;

if (is_lisp_pointer(word)) {

long *address = (long *) native_pointer(word);

for (i = 0; i < nsegments; i++)

if (segments[i].old_start <= address

&& address < segments[i].old_end)

{

*p += ctx->segments[i].displacement;

break;

}

nrelocated = 1;

} else {

relocfn fn = reloctab[widetag_of(word)];

if (fn)

nrelocated = fn(p, ctx);

else

nrelocated = 1;

}

}

}

Demonstration

